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ABSTRACT

A robust confidence interval using bi-

weights for the case of five observations is

proposed when the underlying distribution has

somewhat heavier tails than the Gaussian. The

distribution of a "t"-like statistic is approx-

imated by a Studentt s t on the nominal four

degrees of freedom using different scale fac-

tors which depend upon the value of the bi-

weight weights. Results given by Monte Carlo

simulations indicate that, even for very high

coverage probabilities, the intervals proposed

are highly efficient, in terms of the expected

length of the confidence interval.
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0. INTRODUCTION particularly complicated by the facts that

In an earlier report, the author [9] considered the use of (t) suspect "outliers," even in Gaussian samples,

the biweight in constructing a confidence interval for a sample 
are not uncommon;

of at least ten observations. Using the Student's t critical (ii) a 95% confidence interval for five Gaussian
observations necessarily extends beyond the

point on nine-tenths of the nominal degrees of freedom, it was range of the data;

found that the efficiency of a 100'(l-a)t confidence interval (iii) an extremely heavy-tailed situation offers just

in the Gaussian and in symsetric stretched-tailed situations ex- minimal amount of information required for d con-

ceeded 80% across a wide range for a. In this report, we brave- fidence interval, for, although the variance of a

given H-estimate is finite, higher moments may not be.

ly explore the performance of the biweight in a "t"-like statis-
While there exist many estimates to use in constructing robust

tic when we have only five observations. We are looking for

confidence intervals, this report considers only the biweight in a
good perfor.mance, not only in the (unlikely) event that our

"t"-like statistic, largely on the basis ot its previous success in
sample is truly Gaussian, but also if our sample comes from

problems of interval estimation ((6], (93), regression ([23), and

a population with somewhat 
heavier tails than the Gaussian.

time series ([3]). This report is divided into three parts;
Little is known about the results of robust procedures

Part A presents the results of biweight-"t" in the three sampling
of the location problem alone on such small size samples.

situations; Part B investigates a method to improve our estimate
The Princeton Robustness Study (1] concluded that, in terms of

of the variance of the biweight via "compartmentalizing," and

95% confidence intervals, the estimates could show considerable
Part C offers conclusions and strategies for the case of five

differences in non-Gaussian situations (Section 76); their

observations.

recommendation was a redescending Hampel-type estimator (Sec-

tion 6L). Much of the literature on the interval problem for

small samples has concentrated on the analytic distribution of

Student's t statistic (e.g., [41, [7]). For more general

stretched-tailed situations, several authors have shown that

Studet's t is highly conservative (e.g., (131, [15]). Except

for specific underlying densities, a general solution to the

interval problem has not been considered. The situation is
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PAkT A. THE FAILURE OF "t"b ON "UNUSUAL- SN'PLES.
bi T I I x5 5w(uJIxI-Tb

1. Form of bi -' and concepts. T b i i - Tb2___ _ ___h '" c's (2)

w(u.)

Foc a definition of the biweight and its associated

vquation (2) suggests an iterative solution. We start the

variance, the ceader is referred to [121, we iention here
iteration with a robust estimate of location (in this study.

only the computational methods. 
The biweight estimate of

the median of the sample). The location estimate at the kth
iocatiou, 'fbi. is defined as the solution to the equationitaton

Ti , k > I, is found by

n

S '1((s - Thj)/(cs)) 0 o (tI
i1 S x 

1
w((xt - T(k-)/(c'sI)

T (k) 1-I(]

w h e r e 
i - n w T 

( 
/

-i
3

Iw((xi Tb| -)/(c's|)

_u2l2 _ uwlu) Jul II
J(u) else In determining an estimate of scale to use in (3), former

studies (see, e.g., [1].(I] ) suggest the median absolute

Here, a is an estimate of scsle from the sample x..... xn, deviation from the median (ID)t

and c is a multiple of the scale. (h choice of c recom-
S
( 0 )  
led x

I  
eO}0)

mended in 1121 is that for the denominator, c's . is s(0) - med I s T ,
1 1 

I

between 4a, and 6. in the Gaussian case. In this study For reasons to become clear later, Lax (11] showed that a

we will choose c such that c'S is roughly 6o for the more efficient scale estimate may be that using the func-

Gauss ian.| tional fOCR

We may rewrite (I) in terms of the -weight function", a i142. (c0(0)

wlu), whers

where

w(u) -'(u)/u
5 - T

0

whence i (0

ond
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n
2 
(01) in the Gaussian case. However, s

m
2i uses the median and the

n4|(0(1 " i-L (5) MAO in its computation, whereas Sbi uses the mote advancedL (Oi ax( L,-1 *101l location and scale estimates 
T
bi and abi Notice also that

.1 {u) 1s deie [_ i5).1 b itt

Here, as before, T
( ) 

is the median of the sample, s
( 0)

4llui1 as defined in (5) may be written

is the *44D, and c0 is again chosen in order that c0 s(2) 24

is appcosimately the desired multiple of a in the Gaussian q41 1 (|u il) [ir n
case. (Since s(o

) 
Z (2/31) for a Gaussian sample, we L -u2 (l-Sui2 max( 1 .-l+ 1 (i-u2 M-su 2

choose co - 9 for this calculation.)

The exponents of (1-u2) l-u2,and (-5u ...espec-Finally, the denominator of our t bi statistic is tively, suggest the subscript and the name *411 widthec" for

given by S whee S~bL estimates the variance of Tbi • bi (JEquation (4)). Our biweight-"t' statistic then takes
Huber Ma| derives the theoretical asymptotic variance of the foes

Tbi, from which we may obtain a finite-sample approximation " b Tbi
to it as 

Sbi

S 2 " 2. Results on samples of size five.
Sbi -Vitr Ibi) - (csbil"l(0l"l (6) _____

Performance of biweight-"t" will be evaluated on three
where• different distributions:

S i - T b 0 Gaussian
u i 0 One-Wild (4 observations from N(0.,1);

1 unidentified observation from N(0, 100))
as in eluation (4). Notice that, in functional fo0, 0 Slash (N(0,1) deviate / independent U[0,13 deviate)

These three situations are likely to cover a reasonably broad2 2
9
bi - sbi/n , range of stretched-tailed behavior. The critical points of the

just as distribution were all computed via a Monte Carlo swindle. the

results of which may be found in (5). There were 640 samples
n
nr (X i  )2 in the simulation for each sampling situation.

n(n-classical n!2 The success of biweight-"t" will be measured primarily
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gled out because they resulted in unusually large estimates.
in terms of "efficiency" of the expected confidence interval

All of these samples have the property that three of the
length (ECII), i.e., [- -ECILm in(l) I five observations (just over half) ace extremely close

I-actual )J together, with the other two being far enough away that the

where EC]L(.) was defined by Gross ([21) as bis.luace function assigns them zero weight. Such Saussian

samples, although moderately Cate, do occur with more than

ECIL(u) = 2"a%-point*ave(denominator of "t") 2% frequency. In these cases, sbi is sure to grossly

and ECILmin(a) is the "shortest" obtainable for the situation underestimate o, and S
2  

<< Vac(numeratoc), since the

(see (9]). Furthermore, we shall be interested in aproximAting bisiuare operates as for n-3 with extremely small variance.

the distribution of biweight-"t" to a Student's t with some Any reasonable robust estimate of scale would perform like-

degrees of freedom, for practical purposes. Hence, we shall wise. Exhibit 2(b) presents location and scale estimates

sake the correspondence for more "typical" Gaussian samples. In these samples, s
t
2

2o o

(critical point, a) --- > degrees of freedom is much closer in value to the usual sample a hence, good

performance in biweiqht-etm is expected.

When we examine the performance of biweight-"t" on samples

of only five observations (Exhibit 1), we are initially dis- Q. Ouantifying the behavior of "unusual" samples.

appointed with the results. Not only do we see low efficiencies if we can improve the estimate of

in the lengths of the confidence intervals, but the matched vac(nusecatot}

degrees of tA-eedoe are unusually low. It appears that the in these problematic Gaussian samples, we may hope that a

numerator ha, extremely heavy tails; hence, "t"bi is matched similar improvement may be used when the underlying distri-

to a Student's t with few degrees of freedom. bution is not Gaussian. We therefore need a measure by

which to classify the "unusual" samples. Returning to the

3. "Unusual" Gaussian samples. formula (4) for a 2 two possibilities for such a measure

are suggested by:

In'Exhibit 2 we consider the (swindled) estimate of one

n

tail probability. Notice that these samples have been sin- a) S wlu
1
)

1-1
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Or suggest that the three cases can be specified in terms of a

b 
range of one unit in the value of

i-i

an

where ui |

U
1 

- -bi n-5.
I "6.(n 1/2 Sbi )  .Since we would like to choose the interval so as to most

clearly diffeoentlate among these samples, we choose end-

We ate particularly intecested in distinguishing those points where the density of W is lows

samples tot which one or more of the observations ace fat two "false outliers": W j 3.3

fIom the estimated center. This corresponds to lulI > 1, one "false outlinC": 1.3 < W < 4.3 (8)

for which 10 (uil-w(ui )-O. Oue to the onotonicity of

w(jul), smaller values of the weight fe.nction always indi- no "false outlier•'s W > 4.3.

cate incceasingly greater distance. It appears likely that here. false" alludes to the fact that these observations,

n although some distance from the bulk of the sample, are

I wul will be a more informative ancillacy statistic than
nonetheless bonafide observations foom the same distribution

nI (iu)"  as the others. For the case of One-Wild where

3.3 < W < 4.3, the outlier does in fact usually coccespond

Exhibit I shows stem-and-leaf plots for the values of to the wild shot (from a "(0, 100) distribution). Men-

fl cefoeth, it will be convenient to analyze out results for

1 w(UIl for the three sampling situations. The unusual n-5 not only by situation but by slice. A slice is defined

Gaussian samples described above all fall among the samples by:
n •)n n, & given number of ohberations;

for which I w(ul):2.94. The majority of the samples have nr

I. I b) F, a distributional situation: (9)

n.(ub):4.80, iOt which S2 pe¢ ooaed adequately. The case c) a range of values, WL and wil for which

n WL 
< 
W i wU .

where 5 w(ui):3.98 corresponds to one observation being For a more detailed analysis of the effect of W On the
i-i

treated essentially as an outlier. The stem-and-leaf plots biweight-"t* distribution, we generated nine slices of 600

eamples each, where
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a) n-5 Finally, the large di3crepancy among situations in

b) F - Gaussian, One-Wild, or Slash 2 ) for the low-weight slices suggests that a deeperave(S bil o

c) W < 3.3. 3.1 < W < 4.3, W > 4.3. look at the behavior of these samples is required.

Exhibit 4 tabulates the estimated frequencies foe each 5. Di gression; Granularity of the weight distribution,

slice, and the average values of the biweight and S 
2  

based

bi it is worth commenting on the granularity of the diS-

on the 600 imulated samples. We see that a low-weight
n

slice for n-S is relatively infrequent, occurring in 2%-5% tcibution of W - I w(u i) for the three situations. This
1=1

of all samples from our situations, yet the frequency is
tendency La partly due to our scale estimate.

just large unough to produce the low efficiencies in the

biweight-t" intervals of Exhibit 1. Panel 8 of Exhibit 4 & - tbi " nl bi

reveals that indeed the use of the biweight in the numerator in

of "tbi , 
despite its deflated scaling, is not the real

p(oblem, as its variance, even in the low-weight Gaussian w(ul - w((Xi-Tbi)/(
6
&))

samples, is only slightly more than twice the variance of Ps a rather extreme Case, consider the following estimate of

the optimal mean. The biweight is a big success in the

high-weight samples; notice that the variance of the optimal

mean in the Gaussian situation is nearly attained, and that & - (1/6)min (l1-x3l,Ix2-x31,isX4-x3,IXs5-31)

in all high-weight slices, where the sample x is assumed ocdered lx
1
S5

2
i ..- 15). Then

avedenominator of tbi) 
2 

var (numerator of "t"bi) (10) 3x w (u -x

In the medium-weight slice, Eqn. (10) already approximately 1w(ui

holds for the mote stretched-taited distributions, but it is since w(uil-0 for all i except i-3, when w(u 3
)l. Hence,

off by nearly a factor of 10 in the Gaussian situation. In this functional form for & will result in

order to achieve correspondingly good results for all n

medtum-weight slices, it is likely that we will need to be W - wlui ) - - constant,
i-I

conservative in some places.

regardless of any further characteristics of the sample.
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That this is a rather silly estimate for a can be seen from PART B CO4PARTMEdTALIZIN3; SLICES.

the following two fabricated samples:

a) -1.6, -0.8, -0.6, 0.4, .0 -> & - 6. A scaled biweigh-t" for slices.

b) -0.9, -0.8. -0.6. 0.4, 0.4 -- ) & - 0.03. Since out three weight classes in each situation

Nonetheless, the example does serve to indicate that the vaguely cepresent the degree to which i fails as an esti-
bi

continuity of the density function of W is highly dependent mate of the variance of the biweight. a scaled version of

upon choice of scale. It is juite possible that there t"bi conditional on a given weight slice, eight have a

exists a choice of scale for which It has a somewhat smoother distribution which is note similar to a Student's t. That

density function. Pot teasonably efficient estimates of is, we would like to find a scale factot, K, such that

scale, howevet, its density is likely to have modes

separated toughly by one unit (on the weight scale). The Pi L(U n 1 1111

cutoff points we have selected in Rjuation (9) ace likely to T

be satisfactoty (i.e., to come at very low densities) fot - Pi - a I wL<Uw<.. n P| t V

the weighting based on any reasonable scale estimate.
whete both It and IV may depend on 14 3 (|weghts) and on the

sample size n.

One choice of K is suqgested by the values in ab ibit

4(b). If we want to insist that i/n-l, and, in addition,

that (10) hold a~poximately in all situations, we would

choose out scale factors as follows:

conservative K

Gaussian On e- _ii Slash (max of three)

low W 15.49 8.45 2.21 15.49

medium W 4.16 1.05 0.90 4.36

high W 0.94 0.82 1.01 1.07

While these scale factors ate all of the same otder in the

ndium- and high-weight slices, cleatly we may be such too

conservatlve in the low-weight slice. Putthermote, it Is
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not altogether certain that a matching of were, the usual sample s
2 

would be vetoed on the basis of
2 pc

ave2(deno enato 
)  

va rnume ator its overall non obustness. As we mentioned in |5, s2 per-

focms well with a sufficient number of observations [here we

will transform a biweight-*t distribution into one from the will use g-)0, where 9 is the number of values of y
1
( )].

Student's-t family. Moreover, Portnoy's results 1111) indicate that using the

redescending J-function may help us with at least one type
An adaotire alternative may be based on dealing with

of dependence among the observations. Let us therefore
the actual ;ritlcal points from biweight--t-. Ideally,

choose V
0 

by

"t*I(0i/tV(dj
) - constant (or &%I 'A H;

c 0: 2 (Vol is a minimum. (131

or, ejuivalently,

Secondly, we select a more conservative value for the con-

Yi( - 1og(t(uC I)/t V (Cl - constant fo( all C stant by -aigning

A least squares approach would minimize log(scale factor) - lkgy(V 0 1 (14)

1 ty (0 - constantl
2  

(12) 7. Lo(scale factors), by slice.
i-I __________

whence Exhibit 5 summarizes the degrees of freedom and log

(scale factors) for the slices, both for VO=4 and for V0
constant = ave~yl) ("chosen via (13). The closeness of our fit to a Student's t

Tnen, minimizing 112 1 would be equivalent to on i degrees of freedom may be viewed graphically by plot-

ting

V log((scaled *t'( ))/tv( i)} vs -logl i )

where a 2(10 is our sample variance 
formula

with one standard deviation "confidence limits" obtained

2 2
82(i * (y 1 (O-y(i) 2 /(9-1) from the curves

i-1

Moweve, our y t( are notidpnet neven if they

• iindependent, and, I
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oq((sialed 't'(4i|std eccoc/t (c(3H vs -1o( ) bution is truly Gaussian. For a decenit matching at the less

Notice in these plats (Exhibit 61 that: extreme tail areas, a scaled "t" compared to 2 d.f. uttezvs a

ill a negative value of the ordinate indicates a con- possible approach (Exhibit 7(b)), but the approximatio1 is still

secrvative fit, and far from good.

(2) a negative slope suggests a larger value of f. Comparing the graphs for the two low-weight fits, one pos-

sible procedure is

The most successful approximation is the high-weight for .05 a .0005 .compare "t"/21.0 to Student's t2'

slice, for which for .0005 < a f .00001, compare et"/91.
2 

to Student's t4.

biweight-t)/0.95 approximately distributed as t4  is, however, worthwhile to characterize the differences in

(c.f. Exhibit 6(a)). the three low-weight classes. One difference is apparent from

foc the medium-weight slice, a uniform resecaling of the Exhibits S through 7: the scale factors and approximations for

One-Wild and Slash are very similar to one another and each is con-biweiqht- t distrilbution more closely matches a Student'st

on 3 d.f. One might argue that the Gaussian sample shows a siderably different from the Gaussian. If we had a method whereby

'suspect' outlier, and a conservative, albeit wasteful, we could discriminate the Gaussian samples from those whose under-

approach is to allow ourselves one fewer degree of freedom, lying distribution has more stretched tails, we might be more

There is only a small probability that we will waste this successful in adaptively scaling biweight-"t". This idea is

valid observation in the Gaussian case (0.029 from Exhibit pursued in greater detail in (103.

4). Of course, there is a much gceatec likelihood of

obtaining a medium-weight One-Wild sample; in this case,

infecence based on four of the observations is a sensible

procedure in the absence of knowledge of the kind of contam-

ination. Exhibit 
7
(a) shows the relative improvement in

comparing our scaled *tc points to Student's t on 3 d.f.

The scale factors tor the low-weight slice, however,

ace still radically different. Not surprisingly, t- needs

to be adjusted more drastically when the underlying distri-
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PART C: CLOSE. rowed.) It is riot always clear-, however', if and when we may bor-

8. Conclusions for n=5. row. An unjustified usage of borrowing may be extremely mislead-

The initial aim of this study, that of constructing d valid ing. In this regard, the sum of the weights may lend insight:

confidence interval for the center of a population fur which we an unexpectedly low value of W may caution us to treat this sample

have only five obser-vdtions, led to a more ambitious goal of separately from the rest and not use it in borrowing width infor-

characterizing the distribution of the biweight-"t" statistic, mation. The bor-rowing issue plays a more important role in the

The case with r-5 is perhaps the most difficult of all: there two-sample problem (10].

are too many observations to develop an analytic solution, yet In the absence of additional samples of, say, five observa-

so few that the likelihood of obtaining potentially misleading tions, or any additional width infor'mation for our sample at hand,

samples cannot be ignored. In searching for a more complete des- a conservative approach to the interval estimation problem for the

cription of the tail behavior of "t" on five observations, we single sample of five observations would be

discovered that a characterization based on the sum of the (bi- Al For £ w(u) 5 4.3, use t
4
()'(0 95 "Sb)

weight) weights offers a more satisfying approach. 
i=4

for the allowance in the confidence interval.

When w, can borrow information on width from seve-al samples, As we saw in Section 6, the resulting contsdence

we compute and S using a scale estimate pooled interval performs very well;

from all samples:

B) For 3.3 < £w(u.) 5 4.3, use either t
4 
(a)*(7.1Sbi)

i U2
2

(u ) ]or t 3(S)(.8"S bi) for the allowance;

SPool 9s P)\jn" Jn -- n J C) For £w(u) c 3.3,

*S U t1 )1 (-]+ t'u HJ (i) for .05 1 a s .001 , compare "t"/2l.0 to Student's t

for .001 < a 1 .00001, compare 't"/91.2 to Student's t4;

sp pooled MD, u * (3 1 l-x (ii) consider the improvements, based on additional an-

In this case, as Exhibit 8 reveals, biweight-"t" performs fairly ciliry statistics, given in [10];

(iii) pray for more information.

well. (Thiu Exhibit tabulates only the 
matched degrees of free-

dom and ECIL efficiencies for the sake of brevity; J refers to

the number of samples from which scale information has been bor-



Tail Pr. Crit. Pt. Stnd. Error D.F. ECIL Efficiency

0.00001 222.6 (8.206) 2.0 187.3 1.10
0.000025 219.6 (7.654) 2.0 184.8 0.71
0.00005 206.7 ('7.596) 2.0 173.9 0.56

Dist'n. 0.00010 186.0 7.397) 1.9 156.5 0.47
Gaussian 0.00050 118.1( 5.897) 1.7 99.34 0.53

0.00100 86.79 (4.087) 1.6 73.03 0.68
0.00500 26.93 (1.098) 1.4 22.66 2.92
0.01000 13.20 (0.479) 1.6 11.11 8.04
0.02500 4.325 10.126) 2.0 3.639 41.16
0.05000 2.650 (0.061) 2.3 .2.230 64.64

0.00001 133.8 (4.843) 2.6 169.9 1.33
0.000025 120.5 (4.804) 2.2 153.0 1.04
0.00005 109.0( 4.702) 2.0 138.4 0.89

Dist'n. 0.00010 95.77 13.853) 2.0 121.6 0.81
One-Wild 0.00050 62.60 (2.633) 1.9 79.47 0.83

0.00100 47.70( 2.231) 1.8 60.55 0.99
0.00500 16.10 (0.626) 1.7 20.44 3.59
0.01000 8.170 (0.281) 1.8 10.37 9.22
0.02500 3.390( 0.092) 2.7 4.304 29.43
0.05000 2.196 (0.047) 3.6 2.788 41.36

0.00001 294.188 (13.037) 2.0 763.308 5.70
0.000025 258.162 (12.597) 2.0 669.833 5.78
0.00005 227.870 (12.035) 1.9 591.238 7.18

Dlst'n. 0.00010 210.231 (10.899) 1.9 545.469 6.66
Slash 0.00050 102.154 6.298) 1.7 265.051 5.44

0.00100 53.148 3.305) 1.8 137.901 5.88
0.00500 15.011 (0.553) 1.7 38.947 7.42
0.01000 8.820( 0.281) 1.8 22.886 9.17
0.02500 3.954 (0.106) 2.2 10.258 11.58
0.05000 2.472 (0.056) 2.7 6.415 10.06

Exhibit 1: Results on one-sample biweight - "t" , n-5



Exhibit 2

(A) p{"t" > 3.7471 for 14 "unusual" Gaussian samples.

p bi
Sample x(1) x(2) x(3) x(4) x(5) Tbi Sbi ml

25 -0.552 -0.434 -0.479 0.227 0.658 -0.504 0.024 -0.126 0.242 100.628 0.4437
59 -1.338 -1.292 -0.012 0.010 0.123 0.040 0.043 -0.502 0.333 59.957 0.4303

159 -0.093 -0.088 -0.070 0.132 1.667 -0.084 0.007 0.310 0.342 2439.455 0.4843
165 -0.958 -0.940 -0.930 -0.188 2.111 -0.942 0.008 -0.181 0.591 5041.095 0.4935
178 -1.800 -1.349 -0.056 -0.030 0.008 -0.026 0.019 -0.645 0.386 409.504 0.4755
299 -1.902 -0.540 0.540 0.551 0.607 0.566 0.021 -0.149 0.489 521.027 0.4799
328 -0.994 -0.816 -0.773 1.312 2.012 -0.860 0.070 0.143 0.629 81.376 0.4775
388 -0.480 -0.460 -0.448 0.608 1.400 -0.463 0.010 0.124 0.381 1527.198 0.4362
444 -0.270 -0.173 -0.158 0.834 1.014 -0.200 0.036 0.249 0.277 58.971 0.4271
511 -0.513 0.526 0.554 0.556 1.026 0.546 0.010 0.430 0.254 645.000 0.4678
515 -1.454 -1.442 -1.315 -0.115 0.765 -1.404 0.045. -0.712 0.446 98.448 0.4531
535 -0.898 -0.879 -0.775 0.396 1.187 -0.851 0.039 -0.194 0.422 117.617 0.4549
575 -0.265 0.517 0.544 0.552 2.094 0.533 0.011 0.688 0.384 1210.235 0.4652
604 -2.877 -2.346 -0.091 -0.013 0.039 -0.022 0.038 -1.058 0.640 278.543 0.4906

mean -0.262 0.027 -0.116 .. 0.415 899.220 0.4669
std err(mean) 0.162 0.005 0.130 0.035 360.291 0.0060



Exhibit 2 (continued)

(B) P{"t"bi >3.7471 for 12 "typical" Gaussian samples.

sample x(l) x(2) x(3) x(4) x(5) Tbi Sbt sample
number Sbt

606 -0.657 -0.022 0.217 0.345 2.733 0.131 0.404 0.523 0.579 2.052 0.0030
616 -0.472 0.361 0.615 0.693 0.741 0.568 0.137 0.388 0.225 2.679 0.1440
6T7 -0.321 0.234 0.247 0.703 0.892 0.356 0.224 0.351 0.211 0.886 0.0301
618 -0.457 0.633 0.852 1.070 1.114 0.700 0.z93 0.640 0.290 0.979 0.0075
619 -0.633 -0.178 0.247 0.395 0.871 0.143 0.272 0.141 0.256 0.887 0.0114
621 -0.178 0.183 0.366 0.575 1.034 0.393 0.211 0.396 0.202 0.912 0.0333
622 -1.259 -0.574 0.129 0.612 0.912 -0.025 0.424 -0.036 0.395 0.870 0.0002
623 -1.273 -0.726 -0.686 -0.285 0.151 -0.565 0.251 -0.564 0.238 0.897 0.0177
624 -0.771 -0.507 -0.406 0.095 0.983 -0.143 0.322 -0.121 0.310 0.923 0.0035
627 -0.086 0.000 0.289 0.455 1.091 0.336 0.219 0.350 0.210 0.917 0.0333
629 -0.539 -0.538 -0.045 0.715 1.169 0.143 0.367 0.152 0.342 0.868 0.0010
631 -1.417 -0.996 -0.378 0.130 0.192 -0.487 0.340 -0.494 0.314 0.855 0.0022

mean 0.129 0.289 0.144 0.298 1.144 0.0240

std err (mean) 0.111 0.025 0.110 0.031 0.169 0.0120
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Exhibit 3
Stem-and-leaf plots foc W=jw(u.)

foc thcee sampling situations (n'-5)

(i) 640 Gaussian samples:

2914444444444444444444
30 1
311
321
331
341
351
361
371
3918888888888888
39 0677
401
41115
42 347
43107
44 1136
45 156
46 57
4710]456777778388888899999999999999999999999999999999+]6
481 0000000000000000000000000000000000000000000000000+99+
4910] 244

(ii) 640 One-Wild samples:

291444444444444444446
30 1
3],
321
331
341 24
351
361
37 1
381 36639888888888888888888888888983989888883898888+99+
3910122344555799
40 3446
411 3579
421
43 0246
44 1389
4512235
4611133357988
47101122345566777777788888999999999999999999999999999+36
48100000000000000000000000000000000000000000000000000+99+

~I



- 25 -

Exhibit 3 (cont.)
Stem-and-leaf olots foc W=w(u.)

foc thcee sampling situations (n 5)

(iii) 640 Slash samples:

291444444444444444444444444444444444446
30 9
311
321
331
341
351
36 1
371 3
381 5778988888889988898988888889938938899888 99888998+9]
391 002235539
401] 233478
411 56
4215
431
441 3459
45 35579
4613889
471]]233455566777888889999999999999999999999999999999+22
48100000000000000000000000000000000000000000000000000+99+
49 4

(iv) Numbec of samples in thcee weight gcoups:

Dist'n I W<3.3 I 3.3<W<4.3 I W>4.3

Gaussian 1 19 I 23 I 599
One-Wild I 19 I 323 I 299
Slash I 37 I ]6] 442
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Exhibit 4
Information of slices for n=5

k) Relative frequencies (in %) of slices
(standard errors in parentheses)

Gaussian One-Wild Slash

W<3.3 2.43 2.80 4.57
(0.10) (0.]]) (0.13)

33<W<43 2.76 45.57 21.14
- (0.10) (0.34) (0.36)

94.8] 51.63 74.29
(0.14) (0.34) (0.38)

3) Some summary values on Tbi and Sbi, by slice

Gaussian One-Wild Slash

0.480 0.500 1.272vac(Tbi) (.014) (.01]) (.065)

W<3.3

aye(S2  0.002 0.007 0.260
a i (.0001) (.0001) (.032)

vac(T 0.380 0.253 2.242
bi (.005) (.001) (.220)

3.3<W<4.3
ave(32 0.020 0.230 2.771

b) (.015) (.002) (.306)

vac(T 0.203 0.923 9.450
bi (.004) (.033) (5.050)

W>4.3

ave(S2 0.228 1.219 9.300
bi (.808) (.062) (2.647)

- ---------- i-----------.----.----- ---. -w -. - i- i I- - - - ---.- I
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Exhibit 5
Log(scale factocs), by slice

A) Fitted log(scale factocs) (=log(K)) and

degrees of fceedom (=(/):

Gaussian One-Wild Slash

Low V 2 2 3
Weight log(K) 1.59 1.22 1.53

1

Medium V 3 4 3
Weight log(K) 0.68 0.29 0.17

High V 5 5 4
Weight log(K) 0.064 -0.035 -0.10

B) Log(scale factocs) foc degcees of fceedom = 4:

Gaussian One-Wild Slash

Low V=4: 1.79 ].96 1.7]

Medium V=4: 0.85 0.28 0.34

High V=4: -0.016 -0.12 -0.10

C) Log(scale factocs) for V=-]+(-]+Iweights]:

Gaussian One-Wild Slash

Low V=2: 1.32 1.22 1.18

Medium V=3: 0.68 0.13 0.13

High V=4: -0.016 -0.12 -0.10



- 28 -

0.04 _

0.00 -

-0.04 

_

-0.08 -

-0.12 .

-1
-I

-0.20

-0.24-

-0. 28 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

-lOglO (a) ->

Exhibit 6(a). Plot of log1 t(0 " -loglOa)

on high-weight slices, n=5.

(g=Gaussian; w-One-Wild; s=Slash;

including 1 std. dev. in It"())

I,
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0.02')

-0.08

-0.18-

-0.28

-0.38

-0.48

0 -0.58-

-0.68

-0.78 ________________________________

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

("t (c)/7.l\ -log o(c) -+.

Exhibit 6(b). Plot of log10o VS. -log1 0 (a)t4 /)

on medium-weight slices, n=5.

(g=Gaussian; w=One-Wild; s=Slash;

inelviding 1 std. dev. in "'t t)
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0.03 _

-0.08 _

-0.19

o -0.52

-0.63 -

-0. 74

-0.85-
I I I I I

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

-"og1((1.)

Exhibit 6(c). Plot of log1 0 (t(a+ 9I. 2) vs. -log,0 (c)

on low-weight slices, n=5.

(g:Gaussian; w=One-Wild; s:Slash;

including 1 std. dev. in "t"(t))

i ..- i.ii-. ..-. I il I I. I I
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0.01 -F

-0.10 _

-0.21-

-0.32 _

-0.43 -

C -0.54

0 -0.65.

-0.76 -

-0.87 -

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

-loglo (c)

Exhibit 7(a). Plot of lOgl0  t3(4)  vs. -logl

on medium-weight slices, n=S.

(g=Gaussian; w=One-Wild; s=Slash;

including 1 std. dev. in "t"(a))

S)i1



- 32 -

0.00 -

-0.09 - W

T -0.18 
-

27-0..6

-0.36

-0. 45

0

-0. 54

-0.63-_

-0.72-,
I I I I I I

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

-log,0 (a) - +

Exhibit 7(b). Plot of log 0  t2(ta l) vs. -logl0(

on low-weight slices, n=5.

(g=Gaussian; w=One-Wild; s:Slash;

including 1 std. dev. in "t"(a))
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Exhibit 8
3iweight-"t" on n=5: 3occowed numecatocs
and denominatocs, using pooled ASYMV.

#boccowed 2 1 3 1 4 5

( Id.f. eff. I d.f. eff. Id.f. eff. Id.f. eff.

Gaussian

.00001 5.2 97.0 1 8.5 82.0 1 9.0 85.] 19.] 86.8

.00005 6.2 96.2 8.4 94.8 1 9.5' 88.6 1]9.6 85.7

.0001 5.0 96.1 8.5 86.5 9.3 91.1 1]9.5 85.8

.0005 5.9 98.4 9.5 90.8 ]].7 92.0 1]9.3 87.7

.001 5.5 99.3 10.2 99.0 ]3.] 98.5 20.3 89.]

.005 5.6 101.6 1 11.6 101.1 16.2 107.6 126.3 93.2

.01 5.9 115.7 12.5 103.7 18.4 110.4 33.7 95.0

.025 6.5 127.4 14.5 103.7 25.1 113.7 182.0 97.5

.05 1 7.0 133.4 1 13.4 105.7 147.4 116.2 1o@ 99.4

One-Wild

.00001 5.2 58.1 8.9 70.9 9.3 92.0 124.4 85.1

.00005 5.8 60.5 9.0 70.3 9.3 91.5 129.0 84.4

.0001 6.0 63.1 9.0 66.5 1 9.7 91.1 130.4 84.2

.0005 6.2 54.0 1 9.8 64.0 113.4 90.2 142.3 83.3

.001 5.9 68.1 1 8.3 62.4 116.6 94.7 155.3 83.3

.005 5.8 75.2 1 12.9 69.2 134.] 96.1 1 o 93.2

.01 6.6 81.2 1 16.7 71.0 176.0 96.9 1 o 92.8

.025 1 8.5 83.5 1 32.7 71.5 1 96.6 I 0 92.1

.05 111.6 93.1 co 70.9 1o 95.2 1co 90.9

Slash

.00001 7.8 41.2 10.0 48.3 12.2 50.1 11.2 49.3

.00005 7.7 40.4 1 10.0 45.4 112.1 52.2 110.9 49.8
.0001 7.5 40.0 1 9.8 46..] 11 .3 51.1 111.0 49.2
.0005 7.5 42.1 1 10.4 49.9 ]] .5 49.2 IM .7 47.6
.001 9.0 44.2 10.6 52.2 12.0 49.0 11.9 48.5
.005 8.2 50.0 11 .1 54.3 112.4 49.9 1)2.1 49.1
.01 9.4 51.5 11.2 58.] 11 .4 51.8 117.5 50.9
.025 1]1.5 52.3 1 19.0 60.7 54.1 52.2 1o 51.9
.05 123.1 52.3 1202.4 68.6 1 o 55.5 1o@ 53.0
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